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We	are	developing	a	reproducible	and	measurable	approach	to	the	deployment	
of	 complex	 adaptive	 networks	 of	 aerial	 drones,	 mobile	 ground	 robots,	
underwater	gliders,	ROV	s	and	fixed	or	mobile	sensors	deposed	on	the	ground	or	
the	 sea	 floor.	 The	 approach	 exploits	 Voronoi	 maps,	 multisensory	 fusion	 of	
different	 kind	 of	 chemical	 and	 non	 chemical	 sensors	 framed	 by	 a	 multi	 agent	
Belief	Space	Planning	methodology.		
	
Our	project	 –	 integrating	 resources	 from	 the	AIFORS	Lab	 at	 FER,	University	 of	
Zagreb,	Heron@CNR	Joint	Lab	and	University	of		Warsaw-	and	opportunistically	
looking	 for	 funding	 at	 national,	 European	 and	 international	 level	 -	 aims	 to	
integrate	a	new	concept	of	self-organizing	sensor	networks	with	a	robot	swarm	
acting	in	an	open	ended	environment.	
The	 extraction	 of	 information	 from	 the	 environment	 and	 mapping	 of	 the	
environment	are	organized	as	two	emergent	concurrent	processes.	The	network	
creates	 nodes	 as	 the	 individual	 swarm	 members	 randomly	 explore	 the	
environment.	 The	 process	 of	 self-organization	 and	 growth	 of	 the	 swarm	 is	
controlled	by	a	fitness	function	based	on	a	function	of	mutual	information	among	
the	 swarm	 members.	 Networked	 sensors	 are	 more	 densely	 released	 into	 the	
environment	with	reference	to	higher	entropy	measures	locally	calculated	by	the	
already	deployed	sensor	points.	The	nodes	are	created	when	the	fitness	function,	
representing	 the	mutual	 information	between	 the	nodes,	 is	 above	a	 'relevance'	
threshold.	The	creation	of	new	nodes	evolve	in	time	while	the	individual	agents	
randomly	 explore	 the	 environment.	 Any	 new	 node	 attach	 preferentially	 to	 the	
already	 existing	 ones	 according	 to	 their	 'fitness	 '.	 The	 agent	 swarm	 act	 as		
particle	swarm	optimization	(PSO)	algorithm	which	changes,	at	each	time	step,	
the	velocity	of	each	particle	 toward	 its	pbest	and	 lbest	 locations	by	means	of	a	
random	procedure.	Particle	 swarm	optimization	 is	 a	 simple	 algorithm	 that	has	
been	 proposed	 for	 optimizing	 a	 wide	 range	 of	 functions.	 We	 apply	 to	 the	
managements	of	 a	 flock	of	 autonomous	agents	 the	behaviour	 rules	 supposedly	
working	in	natural	flocks	of	birds,	and	more	appropriately	in	our	case,	schools	of	
fishes,	 following	 the	 original	 example	 from	 Reynolds.	 The	 initially	 considered,	
semi-structured,	 application	 scenarios	 are	 geophysics	 high	 resolution	
tomography	 applications,	 the	 identification,	 mapping	 and	 tracking	 of	 	 slowly	
changing	environmental	parameters	in	 ‘calm	waters’	for	example	at	the	bottom	
of	 sea	 harbours	 or	 small	 secluded	 bay.	 The	 monitoring	 robots	 flock	 to	 the	
‘informational	saliency’	hot	spots.	The	extensive	sensory	mini	micro	bots	set	up	
an	 on	 field	 dynamic	 sensory	 and	 communication	 mesh	 integrated	 with	 the	
mobile	 robots	 and	 ambient	 intelligence	 based	 the	 opportunistically	 deployed	
sensors.		
Reynolds	 proposed	 a	 simple	 but	 effective	model	 for	 the	 behaviour	 of	 swarms,	
such	 as	 a	 flock	 of	 birds	 or	 school	 of	 fish,	 which	 are	 able	 to	 move	 in	 a	
synchronized	manner	without	any	central	planning	or	control.	This	approach	has	
been	recently	applied	to	swarm	of	robots.	In	our	case	the	Reynolds'	algorithm	is	
applied	 to	 a	 flock	 of	 environment	monitoring	 robots	 integrated	with	 a	 sensor	



dust.	The	aim	is	to	opportunistically	deploy	robots	and	sensors	to	acquire	more	
information,	 and	 in	particular,	 information	 that	 is	 correlated	with	 the	 evolving	
sensory	motor	network	of	the	swarm.	Novel	communication	strategies	are	being	
developed	to	improve	communication	bandwidth	over	state	of	the	art.	This	will	
be	the	topic	of	future	reports.	
	
Multisensory	Data	Fusion	
	
In	 summary	 the	 system	 as	 a	 whole	 will	 perform	 a	 simultaneous	 localization,	
mapping	and	time-tracking	of	a	number	of		‘environmental	measures’	useful	for	
the	characterization	of	slowly	changing	underwater	environments.		
	
Example	 of	 tracked	 low-frequency	 	 ‘environmental	 feature	 variable’	 slowly	
changing	over	time	are	given:	
		

1. Acoustic	
2. Light	Scattering	(sensors	in	the	pipe???)	
3. Aerosol	dispersions	
4. Variable	optical/acoustic	characteristics	of	medium	
5. Variable	friction	
6. Micro-seismics	
7. Micro-winds	
8. Electromagnetic	
9. Others….	

		
In	 a	 first	 stage	 we	 will	 focus	 on	 1,2,6,8.	 However,	 the	 methodology	 and	 the	
platforms	make	 possible	 a	multi-messenger	 sensory	 fusion	 scheme	 potentially	
very	 effective	 for	 noise	 characterization	 of	 	 the	 ITF	 surrounding	 environment	
and	in	perspective	of	the	ITF	itseld.	
Multisensor	data	fusion		allows	to	efficiently	and	effectively	merge	observations	
from	 different	 kind	 sensors	 to	 build	 a	 time	 varying	 map	 description	 of	 	 the	
environment	with	respect	to	the	variables	of	interst	.		
		
ANSER	II	(cit.	Durrant-White	2008)	is	an	example	of	Decentralised	Data	Fusion	
system	such	as	that	we	are	implementing.		ANSER	II	models		sensors	through	the	
likelihood	function,	and	shows	how	very	different	data	fusion	architectures	from	
the	‘vanilla’	Bayesian	form	can	be	implemented..	
Decentralised	data	fusion	(DDF)	methods	exploit	the	fact	that	the	informational	
form	of	 the	Kalman	 filter	data	 fusion	algorithm	can	be	 implemented	by	 simply	
adding	 information	 contributions	 from	 the	 observations	 coming	 from	 the	
sensors.	 	 This	 allows	 (thanks	 to	 the	 commutative	 properties	 of	 addition	 on	
Vectors	and	Matrices)	 the	posterior	estimates	can	be	optimally	 integrates	with		
the	 measures	 coming	 from	 an	 heterogeneous	 network	 of	 spatially	 distributed	
sensors.	
The	 individual	 sensors	 are	 modelled	 as	 local-to-the-agent	 likelihood	 function.	
The	 local	Bayesian	network	nodes	share	the	time	and	observation	updates	and	
exchange	mutual	 information	 	 (information	 gain.	 As	 a	 consequence,	 the	 single	
posterior	obtained	by	merging	the	timed	observations	of	the	nodes	is	more	likely	
to	approximate	the	ground	truth	than	those	of	the	individual	nodes.	



	
	
The	Reynold’s	Boid’s	model	
	
When	 the	 flock	 algorithms	 	 are	 used	 as	 an	 optimization	 tool	 there	 are	 several	
possible	 improving	 including	 dealing	 with	 constrained	 optimization	 problems,	
introducing	 a	 craziness	 operator	 to	 increase	 the	 likelihood	 of	 escaping	 from	 a	
local	minima,	and	dynamically	changing	the	inertia	value	w.	
The	PSO	(Particle	Swarm	Optimization)	is	a	stochastic	population	based	process	
depending	on		the	memory	of	each	agent	as	well	as	the	knowledge	gained	by	the	
population	as	a	whole.		
The	population	is	called	the	''swarm'	while	the	single	agent	is	called	a	'particle'	
	
Our	robot	and	sensor	network	will	act	as	an	‘embodied’	PSO.	
PSO	 can	 be	 seen	 comparatively	 as	 an	 example	 of	 non-gradient	 based,	
probabilistic	search	algorithms.	Other	examples	are	evolutionary	algorithms	and	
simulated	annealing	algorithms.	
This	class	of	optimization	algorithms	have	several	appealing	characteristics.	
They	are	generally	easy	to	implement,	can	be	implemented	on	a	large	numbers	
of	 parallel	 processors,	 are	 efficient	 for	 finding	 global	 or	 near	 global	 solutions,	
they	don't	need	the	computation	of	derivatives.		
The	 main	 disadvantage	 is	 the	 weak	 local	 search	 capabilities	 and	 the	
computational	cost,		that	in	our	case	is	distributed	among	the	robotic	agents.	
	
	
We	 have	 implemented	 a	 BSP	 (Belief	 Space	 Planning)	 versiom	 of	 Reynolds	
flocking	model.	
Reynolds	 has	 shown	 (Reynolds,	 1987)	 that	 flocking	 behaviours	 can	 be	
implemented	by	 imposing	 to	 the	 individual	 agents	 a	 surprisingly	 simple	 set	 of	
rules:	
	

1. Separation	-	avoid	crowding	neighbours	(short	range	repulsion)	
2. 	Alignment	-	steer	towards	average	heading	of	neighbours	
3. 	Cohesion	 -	 steer	 towards	 average	 position	 of	 neighbours	 (long	 range	

attraction)	
		
In	our	system	each	agent	targets	the	centers	of	the	school	of	(robot)fishes	–	(3)	-		
and	keep	distance	among	boids	(1,2).		
Leveraging	on	the	tests	reported	in	Annex	I,	it	has	been	developed	in	cooperation	
by	 the	 University	 	 of	 Warsaw	 and	 	 Heron	 Robots	 a	 first	 iteration	 prototype	
mobile	 robot	 for	 geoseismic	 applications.	 A	 new	 low	 cost	 iteration	 is	 under	
development	 by	 a	 cooperation	 University	 of	 Warsaw,	 AIFORS	 Lab	 at	 FER,	
University	of	Zagreb	and	Heron	Robots.	
	
	
Conclusion	and	Future	work	
	
The	system	described	here	integrates	a	flocking	algorithm	for	the	coordination	of	
the	 robot	 swarm	 with	 a	 sensory	 'dust'	 distributed	 in	 accordance	 with	 an	



opportunistic	 strategy	 based	 on	 information	 gain	 measures.	 This	 strategy	 is	
inspired	 by	 a	 model	 of	 the	 evolution	 of	 sensory	 layouts	 in	 natural	 intelligent	
systems	 (Bonsignorio,	 2007,	Olsson,	 2004).	 The	 swarm	organization	 described	
here	could	be	in	principle	more	effective	than	other	more	classical	developments	
for	the	same	purposes.	The	flocking	algorithm	is	quite	simple,	the	self	organizing	
mapping	of	 the	environment	 is,	 in	theory,	very	 flexible,	while	the	opportunistic	
deployment	 of	 sensors	 in	 the	 environment	 could	 in	 principle	 prove	 very	
effective.	 The	 individual	 robot	 ‘agents’	motion	 planning	will	 be	 governed	 by	 a	
Belief	Space	Planning	algorithm.		
The	 field	experimentation	of	 such	a	system	will	help	a	better	understanding	of	
the	 cognition	 processes	 in	 a	 network	 of	 physical	 agents.	 In	 turn	 a	 better	
understanding	 of	 those	 processes	 could	 drive	 the	 development	 of	 more	
intelligent	and	useful	robot	swarms.	
In	[22]	we	have	shown	as	a	suitable	BSP	control	of	the	individual	agent	allows	to	
implement	robust	swarm	behaviours	in	networks	of	physical	agents.		
We	 are	 studying	 the	 integration	 of	 signals	 from	 Virgo-like	 Gravitational	Wave	
detectors	in	the	overall	multisensory	perception	platform.	
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