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Outline 

• I will give an overview of some problems in gravitational wave data 
analysis and how we are trying to solve them with machine learning. 

• I will include improving data quality, searches for binary black holes 
and unmodelled gravitational wave bursts, and the astrophysics of 
gravitational wave sources. 

• I do not include every study in these areas. 
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Gravitational Wave Data Quality
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Fundamental Noise 
• The sensitivity of a GW detector is limited 

by fundamental, irreducible noise 
sources.

• However, the sensitivity of real-world 
instruments is often limited by noise 
sources of different origins, related to 
instrumental and environmental 
disturbances.

• Often these noise sources are non-
stationary, i.e., their statistical properties 
vary over short or long time scales. 
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Non-Gaussian Noise 
• Glitches are noise transients that 

produce excess power in the 
gravitational wave channel.

• They are characterized by their 
SNR, frequency, and morphology.

• Thousands of glitches can occur 
everyday.

• They limit the sensitivity of GW 
searches and can contaminate 
signals. 
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Glitches
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How do glitches limit search sensitivity?
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Timeslides for measuring the GW 
background.

Glitches  even occur during signals.

Image Credit: LIGO Virgo 
arXiv:1710.05832

Image Credit: 
Derek Davis



How do glitches limit search sensitivity?
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Credit: LIGO and Virgo 
Collaborations



How do glitches limit search sensitivity?
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Credit: LIGO and Virgo 
Collaborations



Auxiliary channels

• There are over 200,000 channels which monitor instrument 
behaviour and environmental conditions.

• These channels witness a broad spectrum of potential coupling 
mechanisms.

• We look for correlations between data in the gravitational wave 
channel and these auxiliary channels to identify when glitches occur.

• This can be used to “veto” a gravitational wave detection candidate.  
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iDQ
• iDQ produces low-latency probabilities 

of a gravitational wave candidate being a 
glitch. 

• It uses glitches in auxiliary channels to 
identify glitches in the GW data channel. 
• It provides statistical inferences about 

the probability that a glitch exists within 
the GW channel, by ingesting triggers 
from an trigger generator and passing to 
machine learning algorithms.
• However, not all glitches occur in 

auxiliary channels. 
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Glitch Classification

• Some glitches occur 
only in the GW data 
channel. 

• We can try and 
eliminate them by 
classifying them into 
different types to 
help identify their 
origin. 
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Glitch Classification with PCA 

• Early ML studies for glitch classification 
used Principal Component Analysis (PCA) 
and Gaussian Mixture Models (GMM).

• (See Powell et al. arXiv:1609.06262 & 
arXiv:1505.01299)

• A trigger generator finds the glitches.

• The time series of whitened glitches are 
stored in a matrix D on which PCA is 
performed.

• Then GMM clustering is applied to the PC 
coefficients. 
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Glitch Classification with NN
• These studies were then improved with the use of Neural Networks.

• Razzano & Cuoco 2018 (arxiv:1803.09933) apply a CNN to simulated 
glitches.
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Glitch Classification with NN

• They build images that cover 2 seconds 
around each glitch from the whitened 
time series. 

• Simulated six families of signals.

• Training, validation, and test set with 
ratio 70:15:15.
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Gravity Spy
• GravitySpy uses citizen scientists to produce training sets for machine 

learning glitch classification. 
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Gravity Spy

17



How do I try it myself? 

• Log into gravityspy.org to try classifying glitches

• Download already labelled LIGO glitches for training your algorithm 
from zenodo

• https://zenodo.org/record/1476156

• https://zenodo.org/record/1476551
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Compact Binaries Mergers (CBC)
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Matched filter searches
• Searches for gravitational wave signals from compact binaries use matched 

filtering. 
• GW detector noise is non-Stationary and non-Gaussian. 
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Matched filter searches
• Discrete template bank is built to 

cover the mass-spin parameter 
space for potential sources.

• Density of the bank is determined by 
the minimum overlap requirement 
of 0.97 so only 3% of SNR is lost. 

• Assume spins are aligned to the 
orbital angular momentum.

• Do not account for tidal 
deformability of neutron stars.
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Machine learning CBC searches
• George & Huerta (arXiv:1701.00008) use a system of two deep 

convolutional neural networks to rapidly detect CBC signals. 

• They use time series as input so that they can find signals too small 
for image recognition.
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Machine learning CBC searches
• George & Huerta (arXiv:1701.00008)

• They find their method significantly outperforms conventional 
machine learning techniques, achieves similar performance compared 
to matched-filtering while being several orders of magnitude faster.
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Machine learning CBC searches
• Gabbard et al. (arXiv:1712.06041) also 

perform a CBC search with a deep 
convolutional neural network.

• They use whitened time series of 
measured gravitational-wave strain as an 
input.

• Train and test on simulated binary black 
hole signals in synthetic Gaussian LIGO 
noise.

• They find they can reproduce the 
sensitivity of a matched filter search.
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Low-latency source-properties (EM-bright)

• LIGO & Virgo provide two probabilities in low-latency. (See 
arXiv:1911.00116)

• The probability that there is a neutron star in the CBC system, P(HasNS)  

• The probability that there exists tidally disrupted matter outside the final 
coalesced object after the merger, P(HasRemnant).

• Matched filter searches give point estimates of mass and spin but they 
have large errors!

• To solve this a machine learning classification is used. (scikit learn K nearest 
neighbours, also tried random forest)
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Low-latency source-properties (EM-bright)

• A training set is created by injecting fake signals into gravitational 
wave data and performing a search.

• This then produces a map between true values and matched filter 
search point estimates which is learnt by the classifier.
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CBC Parameter Estimation
• Characterized by 15 parameters. Masses, spins, distance, inclination, sky position, 

polarization. 
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CBC Parameter Estimation
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MCMC and Nested Sampling
• We have two main PE codes LALInference and Bilby

• MCMC Random steps are taken in parameter space, according to a 
proposal distribution, and accepted or rejected according to the 
Metropolis-Hastings algorithm. 

• Nested sampling can also compute evidences for model selection.
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Machine Learning Parameter Estimation

• Chua et al. (arXiv:1909.05966) 
produce Bayesian posteriors using 
neural networks.

• Gabbard et al. (arXiv:1909.06296) use 
a conditional variational autoencoder 
pre-trained on binary black hole 
signals.

• ∼6 orders of magnitude faster than 
existing techniques. 
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Red is Gabbard et al. method and 
blue is Bilby nested sampling.



CBC Population Studies 
• Now that we have started to detect a population of black hole signals we can try 

to do population studies to try and understand signals formation mechanisms. 

• Population properties paper from O1+02 (arXiv:1811.12940).

• Uses phenomenological models (like power laws) combined with Bayesian 
hierarchical modelling. 
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CBC Population Studies 

• Bayesian hierarchical modelling involves 
some assumptions of populations mass 
and spin distributions.

• Does not scale well for high dimensional 
models and a large number of GW 
detections.

• We can use unmodelling clustering! 
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Image Credit: Alison Bolen, The SAS 
Data Science Blog



CBC Population Studies 
• In Powell et al. (arXiv:1905.04825) we apply unmodelled clustering to masses and spins. 
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CBC population studies 

• Two of the populations have identical 
mass distributions and different spin.

• This is difficult because spin is poorly 
measured.

• Determine the number of 
populations and the number of CBC 
signals in each population.
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Gravitational Wave Bursts 
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What are gravitational wave bursts? 

• A burst is a gravitational wave signal 
where the waveform morphology is 
partially or completely unknown. 

• The source could be an unknown 
unknown, a supernova, cosmic string, 
fast radio burst, compact binaries and 
others.  

• The main burst search is called 
coherent Wave Burst (cWB).
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Coherent Wave Burst (cWB)

• cWB searches for excess 
power in the time-frequency 
domain.

• cWB produces 
reconstructions of 
gravitational wave signals. 

• It can detect CBC signals as 
well as bursts.

• https://gwburst.gitlab.io/

GW150914
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BayesWave
• BayesWave is another standard burst 

tool. (Cornish, Littenberg, 
arXiv:1410.3835)

• Models signals as a variable number of 
sine-Gaussian wavelets with power 
coherent across detectors.  

• It produces unmodelled waveform 
reconstructions and can remove glitches 
that occur during signals. 

Credit: Pankow arXiv:1808.03619
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Supernova Search
• Some burst searches are for targeted 

sources like supernovae.

• There is not enough supernova 
waveforms to match filter search, but 
some supernova waveform features are 
known. 

• The known features from supernova 
simulations can be incorporated into 
supernova searches using machine 
learning. 
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Supernova Search

• Astone et al. (arXiv:1812.05363) 
enhance the efficiency of cWB 
using a neural network.

• The network is trained on 
phenomenological waveforms 
that represent the g-mode 
emission in supernova 
waveforms. 
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Supernova Search Astone et al. 

• They use colours to determine which 
detectors find the signal. 
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Supernova Search Astone et al. 
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• They find their method increases the sensitivity of traditional cWB



Supernova Search
• Iess et al. (arXiv:2001.00279) have a 

different approach that does not involve 
cWB. 

• They use a trigger generator called WDF to 
find excess power in the detector. 

• Then they do a neural network 
classification to decide if the trigger is a 
signal or noise. 

• They train directly on supernova 
waveforms.
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Supernova Search – Iess et al. 
• They use both time series and images of data.
• They obtain high accuracies with both methods and include glitches. 
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Supernova Search

• Chan et al. (arXiv:1912.13517) also train directly on supernova 
waveforms. 
• They use only the time series waveforms from different explosion 

mechanisms. 

45



Single Detector Search
• 30% of gravitational wave data is collected 

when only 1 detector is in observing mode. 

• Can’t do time slides to measure the 
background if there is only 1 detector. 

• Cavaglia et al. (arXiv:2002:04591) use 
machine learning combined with cWB to 
perform a single detector search for 
supernovae. 

• They train a genetic programming algorithm 
on the output parameters of cWB. 
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Single Detector Search – Cavaglia et al. 
• FNR is false negative rate
• Specificity is true negative rate
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Conclusions

• Machine learning can improve many areas of gravitational wave 
science. 

• Check out our gravitational wave machine learning review paper 
Elena Cuoco et al. arXiv:2005.03745

• There is still plenty of work left to do!

• You can download the data from the open science center and try it 
yourself. 
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