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Outline

* | will give an overview of some problems in gravitational wave data
analysis and how we are trying to solve them with machine learning.

* | will include improving data quality, searches for binary black holes
and unmodelled gravitational wave bursts, and the astrophysics of
gravitational wave sources.

* | do not include every study in these areas.



Gravitational Wave Data Quality



Fundamental Noise

* The sensitivity of a GW detector is limited
by fundamental, irreducible noise
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e Often these noise sources are non-

stationary, i.e., their statistical properties
vary over short or long time scales.
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* Glitches are noise transients that
produce excess power in the
gravitational wave channel. .
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* Thousands of glitches can occur
everyday.
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* They limit the sensitivity of GW -
searches and can contaminate 2
signals. 16
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Glitches
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How do glitches limit search sensitivity?
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How do glitches limit search sensitivity?
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How do glitches limit search sensitivity?
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Auxiliary channels

* There are over 200,000 channels which monitor instrument
behaviour and environmental conditions.

* These channels witness a broad spectrum of potential coupling
mechanisms.

* We look for correlations between data in the gravitational wave
channel and these auxiliary channels to identify when glitches occur.

* This can be used to “veto” a gravitational wave detection candidate.
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IDQ

 iDQ produces low-latency probabilities

of a gravitational wave candidate being a
glitch. DAFM 7 -

* It uses glitches in auxiliary channels to AR 4
identify glitches in the GW data channel.

* |t provides statistical inferences about AUk 2
the probability that a glitch exists within

the GW channel, by ingesting triggers AOK3 WMMA@“WW

from an trigger generator and passing to
machine learning algorithmes. Credit: Reed Essick

* However, not all glitches occur in
auxiliary channels.
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Glitch Classification

* Some glitches occur
only in the GW data
channel.

 We can try and
eliminate them by
classifying them into
different types to
help identify their
origin.
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Glitch Classification with PCA

e Early ML studies for glitch classification N
used Principal Component Analysis (PCA) 1)
and Gaussian Mixture Models (GMM). w»mmmwfw/ | PN
5 0.04 { A ‘0 f | ‘
* (See Powell et al. arXiv:1609.06262 & gla 5 |V
arXiv:1505.01299) 1
* A trigger generator finds the glitches. z i w 2
* The time series of whitened glitches are i ) 1
stored in a matrix D on whichPCAis [ I T i 2
performed. TV | o
SR TR -
* Then GMM clustering is applied to the PC \g@ A STy A0
coefficients. B e = A SR
13




Glitch Classification with NN

* These studies were then improved with the use of Neural Networks.

e Razzano & Cuoco 2018 (arxiv:1803.09933) apply a CNN to simulated
glitches.
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Glitch Classification with NN

CHIRPLIKE

* They build images that cover 2 seconds
around each glitch from the whitened s 000
time series.

NOISE 1

* Simulated six families of signals.

E

* Training, validation, and test set with T
ratio 70:15:15.
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Gravity Spy

gravityspy.org

* GravitySpy uses citizen scientists to produce training sets for machine

learning glitch classification.
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Gravity Spy gravityspy.org
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How do | try it myself?

* Log into gravityspy.org to try classifying glitches

 Download already labelled LIGO glitches for training your algorithm
from zenodo

* https://zenodo.org/record/1476156

* https://zenodo.org/record/1476551
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Compact Binaries Mergers (CBC)



Matched filter searches

» Searches for gravitational wave signals from compact binaries use matched
filtering.

* GW detector noise is non-Stationary and non-Gaussian.

~

* Inner product: (alb) = 2 /% a(f)b*(fs), j:;)*(f)b(” df

e Matched filter: (d|/h(@))
» d—data
* h —waveform model
* @ - binary parameters

20



Matched filter searches

* Discrete template bank is built to 108
cover the mass-spin parameter 0 i

. v Ixal < 0.999, |xa| < 0.05
space for potential sources. C e Il < 0.999
10°

* Density of the bank is determined by

the minimum overlap requirement
of 0.97 so only 3% of SNR is lost.

Mz (My)

10"

* Assume spins are aligned to the
orbital angular momentum. 10°

]()“ l()l l()2 l()."

j Xiv:1812.05121
Do not account for tidal arXiv

deformability of neutron stars.
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Machine learning CBC searches

* George & Huerta (arXiv:1701.00008) use a system of two deep
convolutional neural networks to rapidly detect CBC signals.

* They use time series as input so that they can find signals too small
for image recognition.
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Machine learning CBC searches

e George & Huerta (arXiv:1701.00008)

* They find their method significantly outperforms conventional
machine learning techniques, achieves similar performance compared
to matched-filtering while being several orders of magnitude faster.
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Machine learning CBC searches -

Whitened strain

e Gabbard et al. (arXiv:1712.06041) also
perform a CBC search with a deep
convolutional neural network.

* They use whitened time series of » " _ s _,,V,
measured gravitational-wave strain as an A i | ,}'ff’jgi’/
Input. ol Loy /”’x}'/

2 —-= FAP = 0.001 p-’l /x_/

* Train and test on simulated binary black 2 o St
hole signals in synthetic Gaussian LIGO : / f
noise. =

= i

* They find they can reproduce the 02 S Ay &

sensitivity of a matched filter search. e A
At S T S R A R
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Low-latency source-properties (EM-bright)

e LIGO & Virgo provide two probabilities in low-latency. (See
arXiv:1911.00116)

* The probability that there is a neutron star in the CBC system, P(HasNS)

* The probability that there exists tidally disrupted matter outside the final
coalesced object after the merger, P(HasRemnant).

* Matched filter searches give point estimates of mass and spin but they
have large errors!

* To solve this a machine learning classification is used. (scikit learn K nearest
neighbours, also tried random forest)
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Low-latency source-properties (EM-bright)

* A training set is created by injecting fake signals into gravitational
wave data and performing a search.

* This then produces a map between true values and matched filter

search point estimates w
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CBC Parameter Estimation

* Characterized by 15 parameters. Masses, spins, distance, inclination, sky position,
polarization.
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CBC Parameter Estimation

’ ; prior I|kelihood
Bayes’ Theorem: .
8ld M) = p(9|M)p(d|9M)
pOld. M) = == amy
i N )
posterior A
evidence
Notation:
p(x) = Probability distribution of x Data: d = noise + GW strain,
p(x|y) = Conditional probability of x given y Model: M(f),

Model parameters: 8 = {m,,m,,d,,.

LAAC tutorial 2019 - Virginia d'Emilio

-}
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MCMC and Nested Sampling

* We have two main PE codes LALInference and Bilby

* MCMC Random steps are taken in parameter space, according to a
proposal distribution, and accepted or rejected according to the
Metropolis-Hastings algorithm.

* Nested sampling can also compute evidences for model selection.

(Skilling, 2006)
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Machine Learning Parameter Estimation

* Chua et al. (arXiv:1909.05966) .
. . . %"#WWWU"L" "
produce Bayesian posteriors using "
neural networks. oo 0
* Gabbard et al. (arXiv:1909.06296) use
a conditional variational autoencoder 3 ®
pre-trained on binary black hole s
signals. . ‘
* ~6 orders of magnitude faster than — l Q
EXiSting tEChniqueS- my (Mg) l(.&(’\s.e(-on(li?\ ma (Mg) TI\[,(Mpc) i

Red is Gabbard et al. method and

blue is Bilby nested sampling.
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CBC Population Studies

* Now that we have started to detect a population of black hole signals we can try
to do population studies to try and understand signals formation mechanisms.

e Population properties paper from 01+02 (arXiv:1811.12940).

e Uses phenomenological models (like power laws) combined with Bayesian
hierarchical modelling.

— .\ln(ll'l \
10" ~ > — MNodel B
o = MNodel C

,'\'l' 1 “l I]

dR/dm, [Gpc

~
10 15 20 25 30 35 10 5 50
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CBC Population Studies

* Bayesian hierarchical modelling involves
some assumptions of populations mass
and spin distributions.

* Does not scale well for high dimensional
models and a large number of GW
detections.

* We can use unmodelling clustering!

Mixture of Three Gaussians

N(p3.E3) *,

Image Credit: Alison Bolen, The SAS
Data Science Blog
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CBC Population Studies

* In Powell et al. (arXiv:1905.04825) we apply unmodelled clustering to masses and spins.
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CBC population studies

e Two of the populations have identical
mass distributions and different spin.

* This is difficult because spin is poorly
measured.

* Determine the number of
populations and the number of CBC
signals in each population.
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Gravitational Wave Bursts



What are gravitational wave bursts?

e A burst is a gravitational wave signal
where the waveform morphology is
partially or completely unknown.

* The source could be an unknown
unknown, a supernova, cosmic string,
fast radio burst, compact binaries and
others.

e The main burst search is called
coherent Wave Burst (cWB).

Freq (Hz)

A: (cm)

=
o
o
(=]

0.0 0.2 0.4 0.6 0.8
time after bounce (s)

36



Coherent Wave Burst (cWB)

e c(WB searches for excess
power in the time-frequency
domain.

-

* c(WB produces )
reconstructions of £
gravitational wave signals. 2

* |t can detect CBC signals as .

well as bursts.

* https://gwburst.gitlab.io/ e
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BayesWave o
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* BayesWave is another standard burst
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Supernova Search

~
>

g-mode at PNS surface

Prompt Convection
Standing accretion
.-Nothing - shock instability (SASI)

* There is not enough supernova (i) 513 10io sci)o 93)3
waveforms to match filter search, but I
some supernova waveform features are

known.

—
o
o
o

* Some burst searches are for targeted
sources like supernovae.

—
o
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* The known features from supernova
simulations can be incorporated into
supernova searches using machine
learning.
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Supernova Search

1000 )

e Astone et al. (arXiv:1812.05363)
enhance the efficiency of cWB o
using a neural network.
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Supernova Search Astone et al.

RGB composition

* They use colours to determine which
detectors find the signal.

G

Figure 2: The mechanism of additive color synthesis. LIGO
Hanford is assigned to red, LIGO Livingston to green and
Virgo to blue. A triple coincidence will appear in white, while
a double coincidence in yellow, magenta or cyan, depending
on which couple of detectors is involved.

—05 0.0 05 1.0
post-bounce time [s]

frequency [HZ]

Figure 3: From the top; the spectrogram of LIGO Hanford
is red, then that of LIGO Livingston is green and Virgo is
blue. At the bottom: the RGB image obtained by stacking the
previous three spectrograms. In this case, the signal is present
just in Hanford and Livingston so that the combined signal at
the bottom is in yellow.
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Supernova Search Astone et al.

* They find their method increases the sensitivity of traditional cWB
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Supernova Search

21 511

* less et al. (arXiv:2001.00279) have a e I s
different approach that does not involve ——
cWB. |
& ol o

* They use a trigger generator called WDF to

find excess power in the detector. . ‘Z’M

* Then they do a neural network e
classification to decide if the trigger is a ..
signal or noise. o N Y i L O Y

e They train directly on supernova 2

waveforms. “ ’ || I II
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t[s]
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Supernova Search — less et al.

* They use both time series and images of data.
* They obtain high accuracies with both methods and include glitches.
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Supernova Search

* Chan et al. (arXiv:1912.13517) also train directly on supernova

waveformes.
* They use only the time series waveforms from different explosion
mechanisms.
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Single Detector Search

* 30% of gravitational wave data is collected
when only 1 detector is in observing mode.

e Can’t do time slides to measure the
background if there is only 1 detector.

e Cavaglia et al. (arXiv:2002:04591) use
machine learning combined with cWB to
perform a single detector search for
supernovae.

* They train a genetic programming algorithm
on the output parameters of cWB.
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Single Detector Search — Cavaglia et al.

* FNR is false negative rate
 Specificity is true negative rate
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Conclusions

* Machine learning can improve many areas of gravitational wave
science.

* Check out our gravitational wave machine learning review paper
Elena Cuoco et al. arXiv:2005.03745

* There is still plenty of work left to do!

* You can download the data from the open science center and try it
yourself.
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