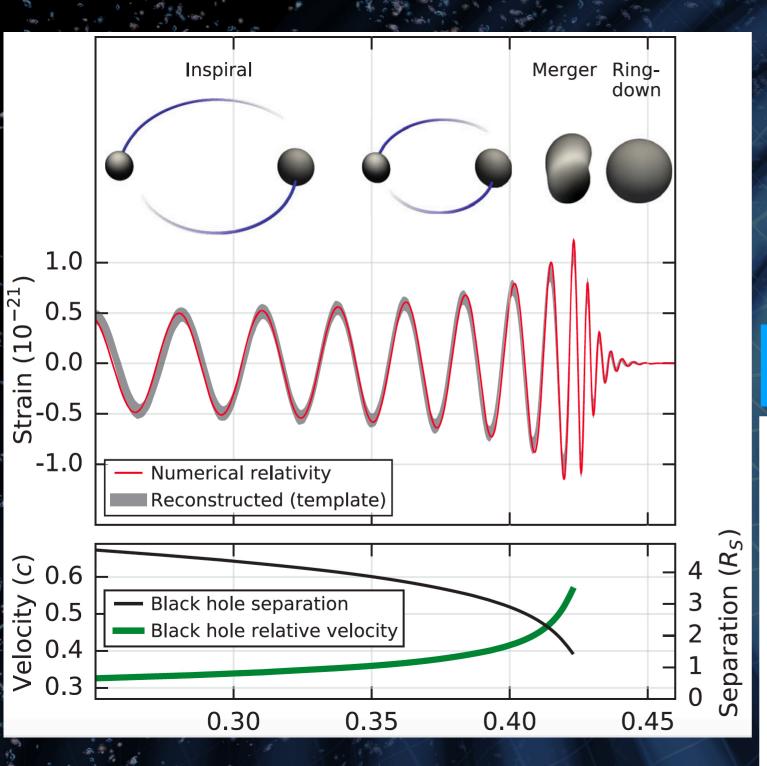
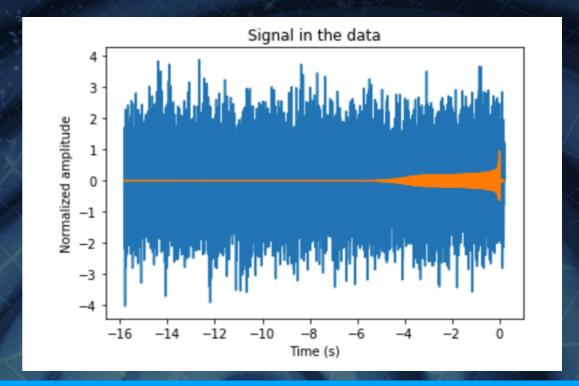
Neural networks for gravitational-wave trigger selection in single-detector periods

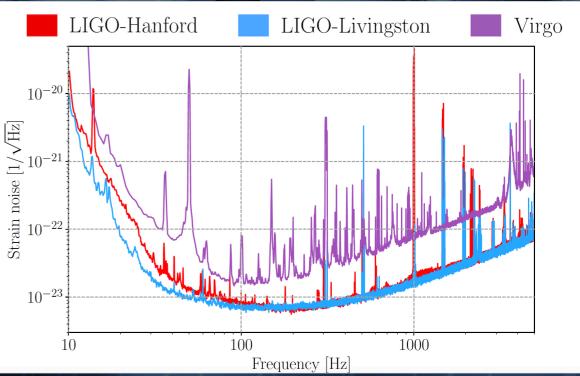
A. Trovato* with M. Bejger and E. Chassande-Mottin,
*APC, CNRS/IN2P3, Université de Paris

Gravitational waves detection problem

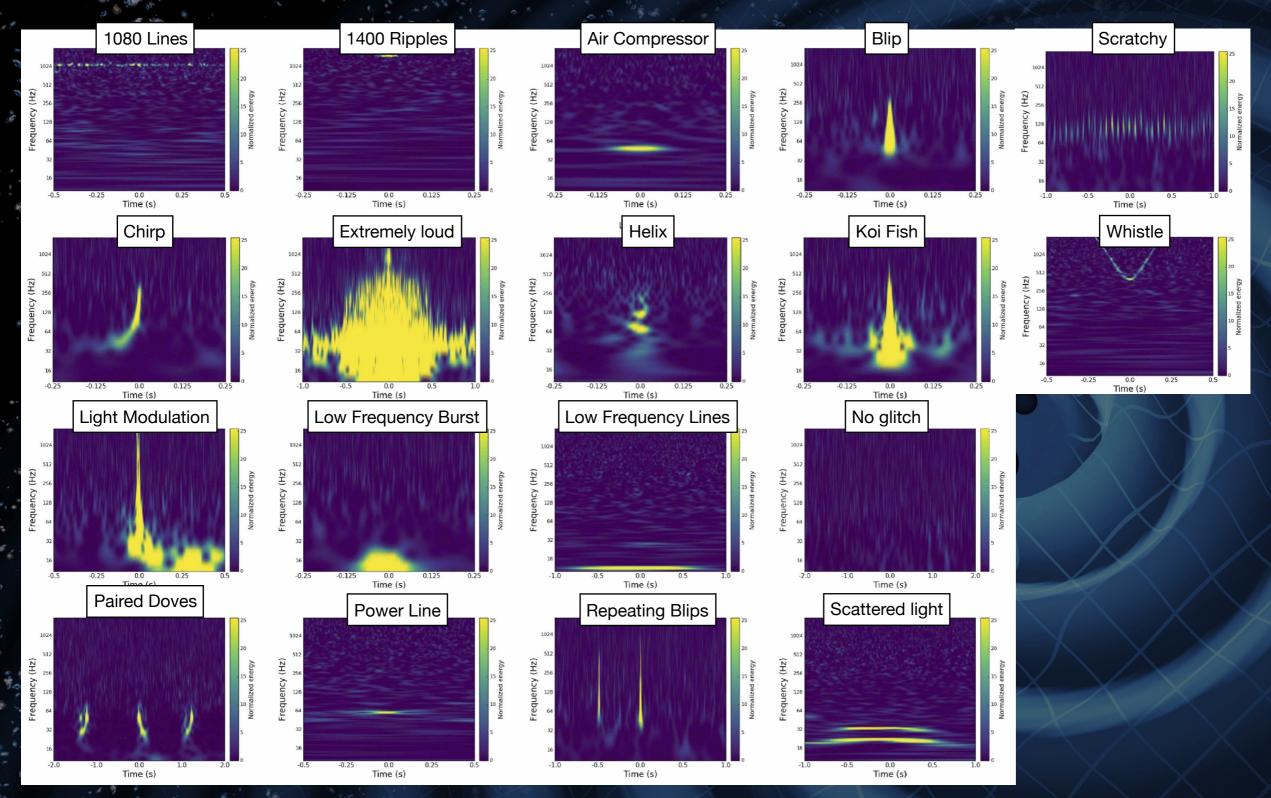




Rare and weak signals in complex background: non-Gaussian non-stationary



Glitches zoo



★ Credits: Gravity Spy dataset

GW data representation for ML

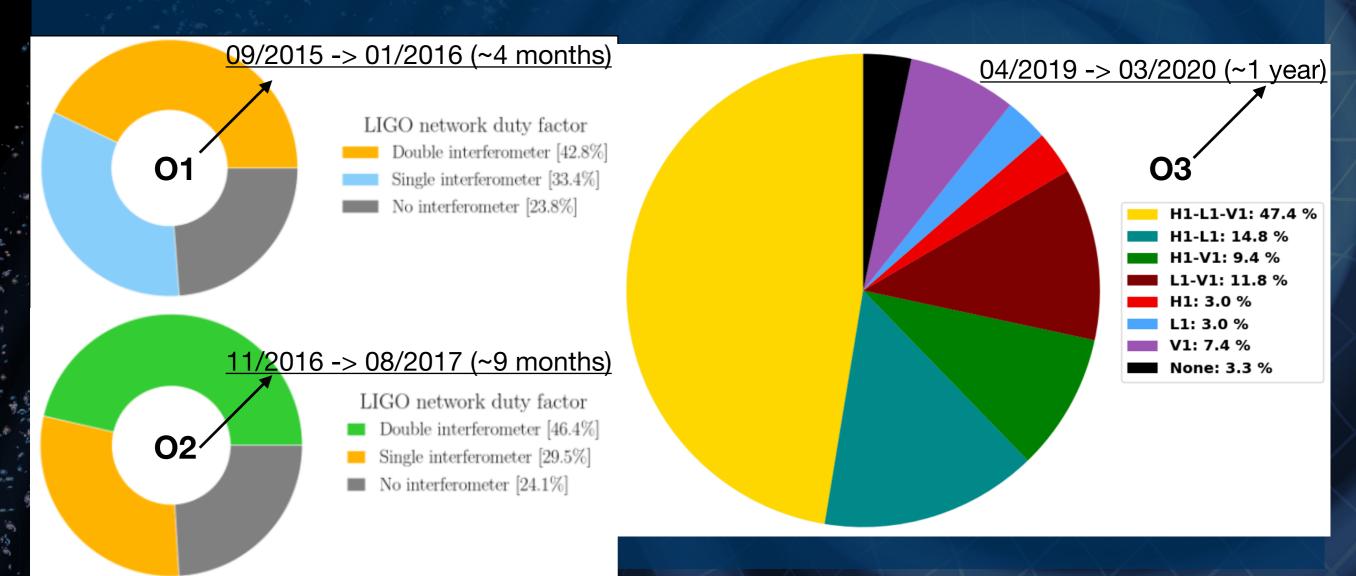
- Spectrograms representation [e.g. CQG 35 (2018) 095016, Information Sciences 444 (2018) 172]
 - Deep-learning performs well on images (reuse standard solutions)
 - ✓ Disadvantages:
 - Volume of data (big images)
 - Spectrogram parameters/choice dependent
 - ▶ Risk of loosing information due to manipulation
- Time series representation [e.g. Phys. Lett. B 778 (2018) 64, Phys. Rev. D100 (2019) 063015]
 - ✓ full information & reduced volume of data
 - Multi-detector searches, attempt to make high-confidence detection

This work:

✓ time-series representation, single detector, trigger pre-selection

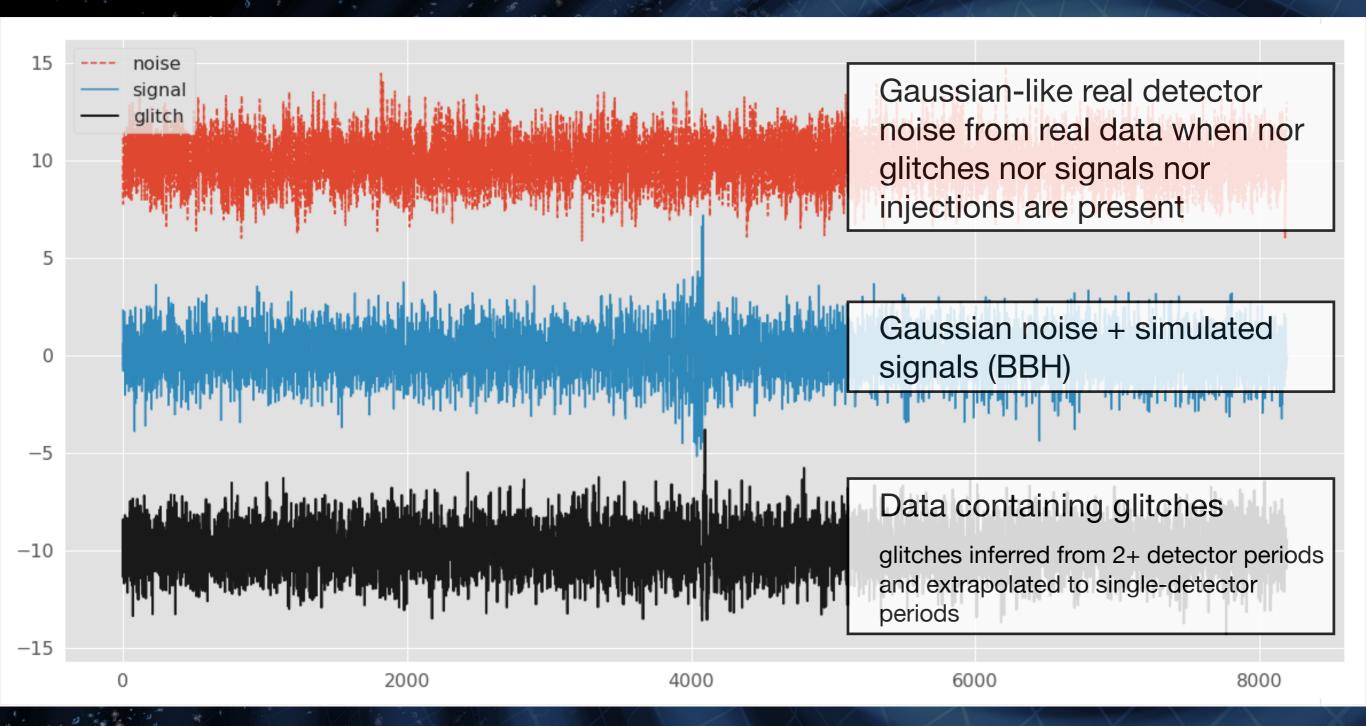
Single-detector time

- Glitch impact on sensitivity is larger during single-detector periods as coincidence with additional detector is impossible. Can machine learning help?
- Single-detector time:
 - ✓ 2.7 months in O1+O2; 1.6 month in O3



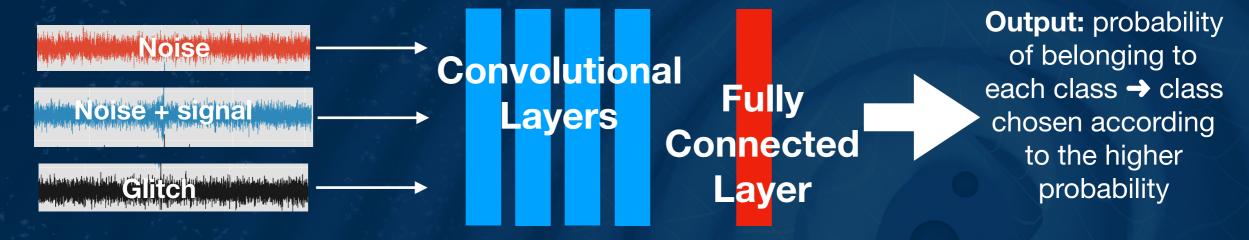
Training data: 3 classes

Segments of glitches and "clean" noise data samples from the one month of LIGO O1 run (downsampled to 2048 Hz), whitened by the amplitude spectral density of the noise.



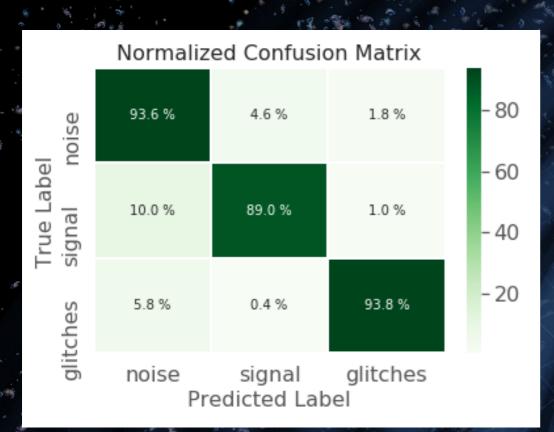
Network used

CNN used: small network with 4 convolution layers (with dropouts and pooling) used as classifier to distinguish the 3 classes: noise, noise+signal, glitches



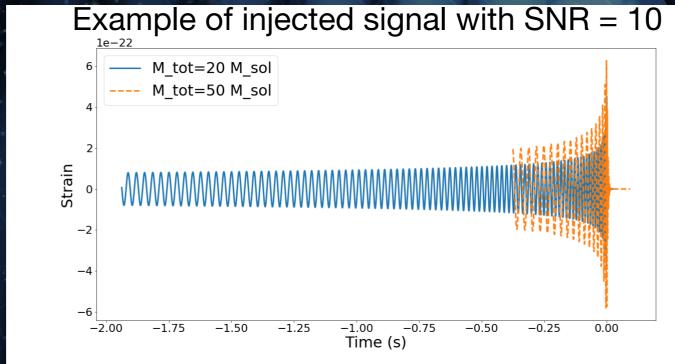
Layer #	1	2	3	4	5
Туре	Conv	Conv	Conv	Conv	Dense
Filters	64	32	16	8	- X
Kernel Size	16	8	8	4	<u> </u>
Strides	4	2	2	1	\ <u>\</u>
Activation	relu	relu	relu	relu	softmax
Dropout	0.5	0.5	0.25	0.25	\mathcal{N}
Max Pool	4	2	2	2	

Confusion matrix and dataset details



Additional dataset details

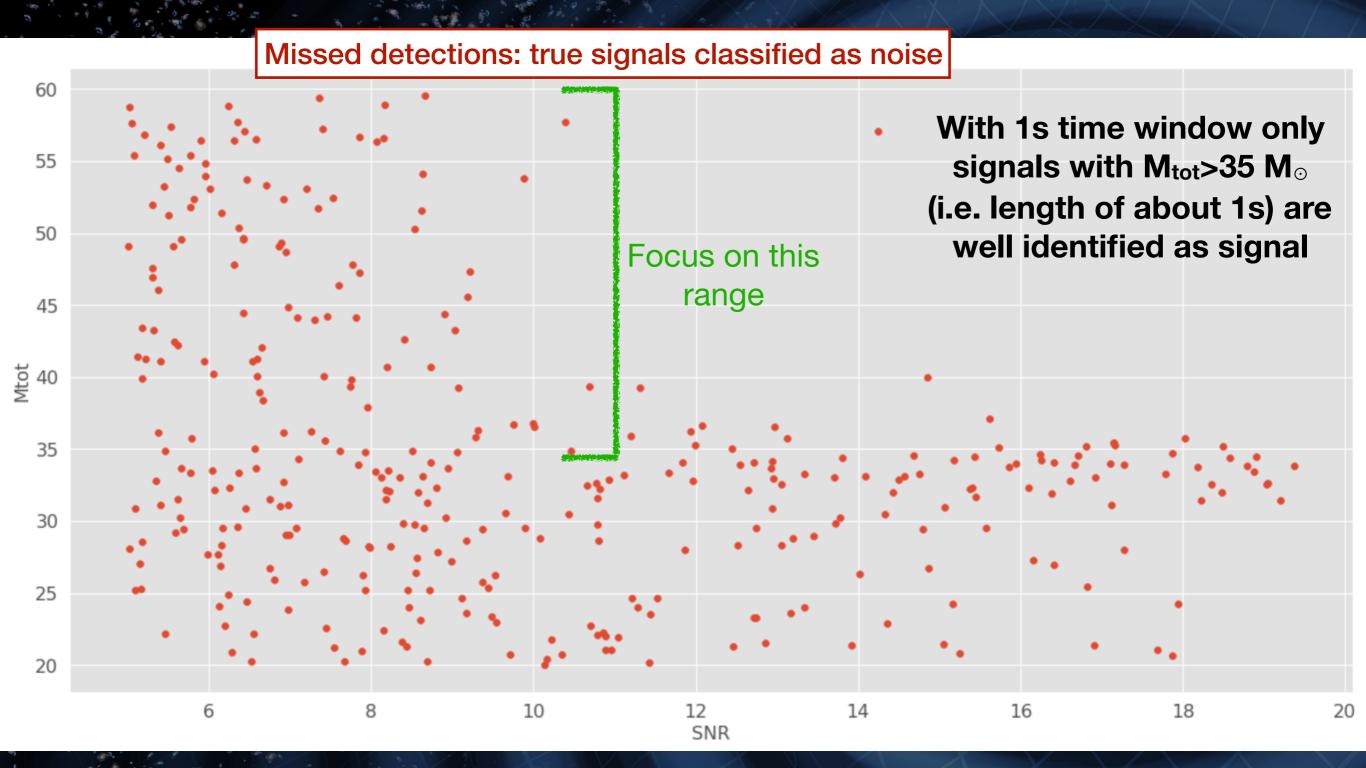
- Segments length: 1 second
- Injected signals (BBH)
 - $> m_1 + m_2 \in (33,60) \text{ M}\odot$
 - > SNR \in (8,20)
- Selected glitches
 - > SNR > 10



Detectability across the parameter space

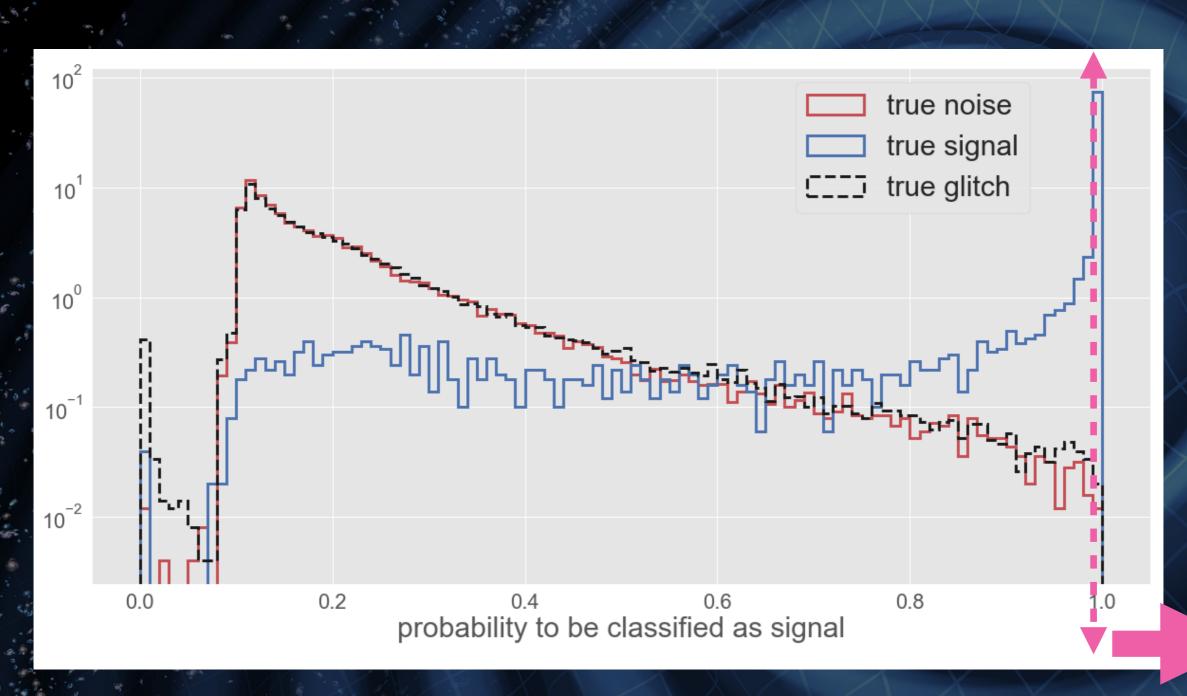
1 s time window

Signal with m_{tot} ∈ (20, 60) M_☉



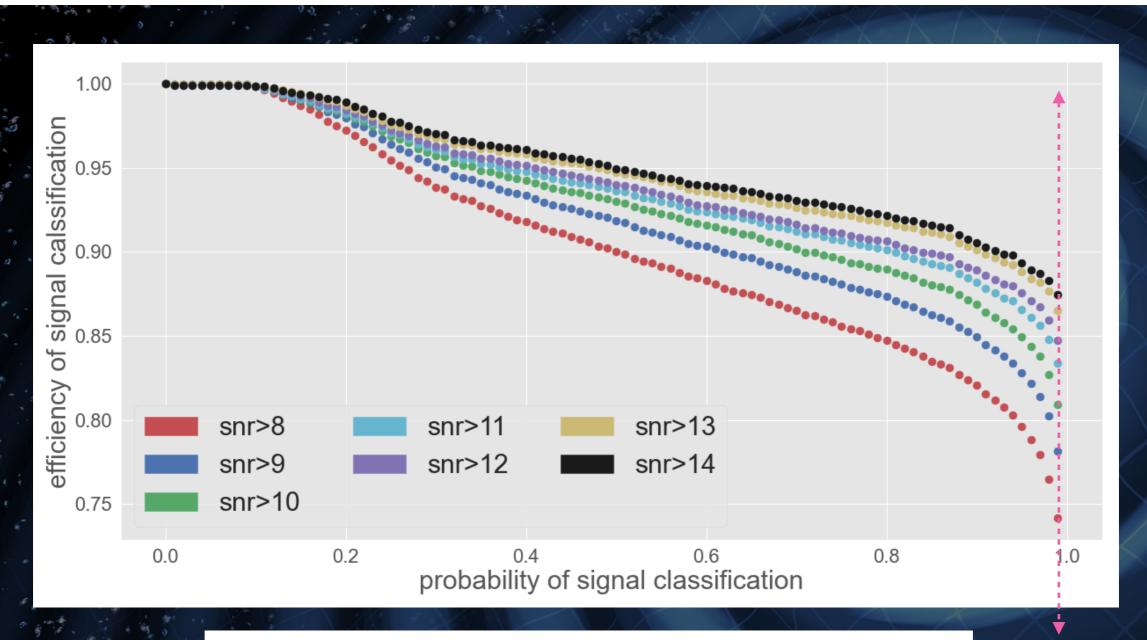
Probabilities of classification

Test: use the probability of the signal classification as statistic to distinguish signal vs noise+glitches



Efficiency

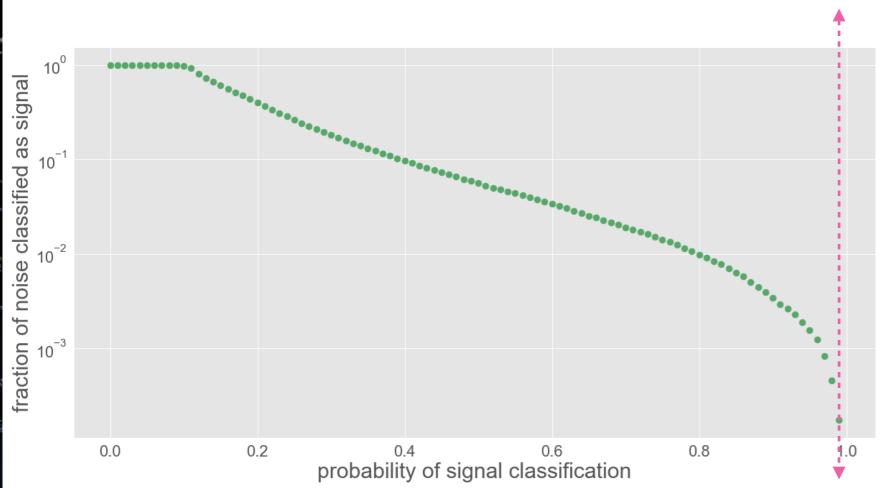
Efficiency = Fraction of signal well classified w.r.t. all the signals present in the dataset



With a stringent cut on probab_signal>0.99, reasonable efficiency around 80-90% for signals with SNR>10

False Alarm Rate

FAR = Fraction of noise+glitches classified as signals w.r.t. all the noise+glitches present in the dataset



With a stringent cut on probab_signal>0.99, FAR ≈ 1/83 min) → this means about 2000 false alarms in O1!

Noise rejection is too limited

Results similar to other works on the subject

e.g. arXiv:1904.08693*, 1701.00008**, arXiv:1711.03121 Trigger pre-selection (rather than high-confidence detection)

*FAR of 1/40 minutes with detection ratio of 86%

**FAR of 0.6% and 100% sensitivity for SNR>10

Conclusion and perspectives

- GW signal classifier from single-detector time-series
 - ✓ Able to reach correct classification to the percent scale
 - ✓ However, not sufficient for high-confidence detection (too many false alarms)
 - ✓ Due to large class imbalance in the observations (signal very rare, noise very common)
- Can noise rejection be improved? Can we optimize the CNN with this objective specifically?
 - ✓ Focus on the imbalance between classes
 - Explore different metrics: e.g. max Recall at fixed Precision
 - ✓ Suggestions are welcome

Backup slides

Precision and recall

Choose a relevant class: e.g. signal

$$ext{Precision} = rac{tp}{tp+fp}$$

Fraction of signal well classified w.r.t. those classified as signal

$$ext{Recall} = rac{tp}{tp+fn}$$

Fraction of signal well classified w.r.t. all the signals present in the sample

$$ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

can be a misleading metric for imbalanced data sets

CNN with different settings

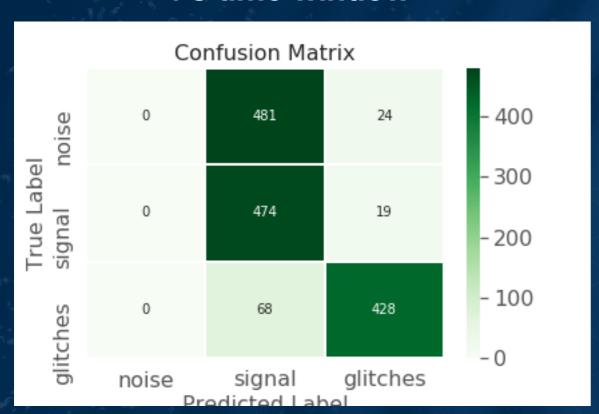
- CNN used: small network with 4 convolution layers (with dropouts and pooling) used as classifier to distinguish the 3 classes: noise, noise+signal, glitches
- We tested the CNN changing:
 - ✓ Length of the input time window: 4 s, 2 s, 1 s
 - ✓ Parameters of the injected BBH signal: mainly masses and SNR
 - Cuts of the SNR of the glitches
 - ✓ Parameters of the network itself (# filters, kernel size, stride, dropout, pooling, ...)
 - ✓ Tested various decision statistics from which an "answer" is obtained

I'll show the effect of some of these tests

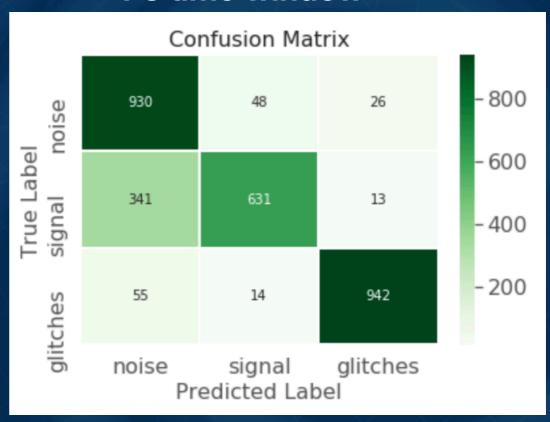
Length of the time window (I)

- Length of the time window (= size of the input data segment) coupled with the masses of the simulated signals
 - ✓ Signals with m_1 , $m_2 \in (10, 30)$ M_{\odot} , 5<SNR<20; glitches with SNR>10

4 s time window



1 s time window



CNN:

Conv1D (500, 5)

MaxPooling1D (3)

Conv1D (250, 5)

Conv1D (500, 5)

MaxPooling1D (3)

Conv1D (150, 5)

MaxPooling1D (3)

Dropout (0.5)

Tuning the network

Network that seems to work better

Layer (type)	Output	Shape	Param #
reshape (Reshape)	(None,	2048, 1)	0
convld (ConvlD)	(None,	509, 64)	1088
dropout (Dropout)	(None,	509, 64)	0
max_poolingld (MaxPooling1D)	(None,	127, 64)	0
convld_1 (ConvlD)	(None,	60, 32)	16416
dropout_1 (Dropout)	(None,	60, 32)	0
max_poolingld_1 (MaxPooling1	(None,	30, 32)	0
conv1d_2 (Conv1D)	(None,	12, 16)	4112
dropout_2 (Dropout)	(None,	12, 16)	0
max_pooling1d_2 (MaxPooling1	(None,	6, 16)	0
convld_3 (ConvlD)	(None,	3, 8)	520
dropout_3 (Dropout)	(None,	3, 8)	0
max_pooling1d_3 (MaxPooling1	(None,	1, 8)	0
global_average_pooling1d (Gl	(None,	8)	0
dropout_4 (Dropout)	(None,	8)	0
dense (Dense)	(None,	3)	27
Total params: 22,163 Trainable params: 22,163 Non-trainable params: 0			
None			

Tuning class weights

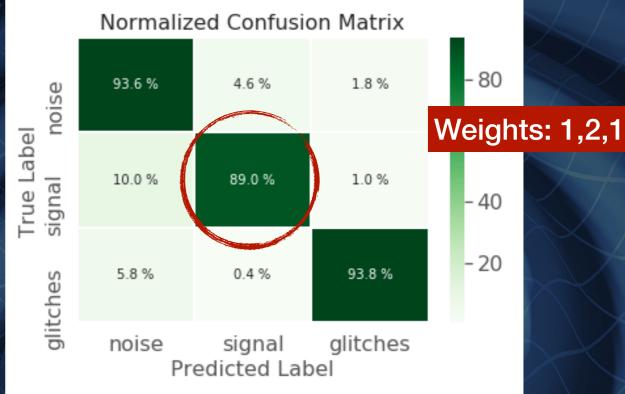
- ★ Unbalanced datasets: identification of the signal which is a rare event
- ★ class_weights: the loss function assign higher value to the classes with higher weight, i.e. the loss becomes a weighted average, where the weight of each sample is specified by class_weight and its corresponding class.

Tuning the network

Network that seems to work better

Layer (type)	Output	Shape	Param #
reshape (Reshape)	(None,	2048, 1)	0
convld (ConvlD)	(None,	509, 64)	1088
dropout (Dropout)	(None,	509, 64)	0
max_poolingld (MaxPoolinglD)	(None,	127, 64)	0
conv1d_1 (Conv1D)	(None,	60, 32)	16416
dropout_1 (Dropout)	(None,	60, 32)	0
max_poolingld_1 (MaxPooling1	(None,	30, 32)	0
convld_2 (ConvlD)	(None,	12, 16)	4112
dropout_2 (Dropout)	(None,	12, 16)	0
max_pooling1d_2 (MaxPooling1	(None,	6, 16)	0
convld_3 (ConvlD)	(None,	3, 8)	520
dropout_3 (Dropout)	(None,	3, 8)	0
max_pooling1d_3 (MaxPooling1	(None,	1, 8)	0
global_average_pooling1d (Gl	(None,	8)	0
dropout_4 (Dropout)	(None,	8)	0
dense (Dense)	(None,	3)	27
Total params: 22,163 Trainable params: 22,163 Non-trainable params: 0			
None			

Tuning class weights



Predicted Label

Length of the time window (II)

A network working with windows of 1s could be combined with another one with 2 s windows, each optimised for different ranges in masses

