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Abstract—This paper presents study on denoising accuracy of
adaptive temporal fltering methods based on the intersection
of confdence intervals (ICI) rule and relative intersection of
conf dence intervals (RICI) rule with regards to signal sampling
rate. The original ICI-based and the improved RICI-based
method were tested on four signal classes for a range of signal
to noise ratios (SNRs). Denoising accuracy, with respect to signal
sampling rate, was measured in terms of the reductions in root
mean squared error (RMSE) and mean absolute error (MAE).
Extensive simulations showed that the data-driven RICI method
outperformed the original ICI method reducing the RSME by
up 79.6% and the MAE by up to 86.1%. It is important to note
that both methods, especially the RICI method, exhibit signif cant
estimation accuracy improvement in case of signals with higher
sampling rates.

Index Terms—Intersection of conf dence intervals (ICI) rule,
relative intersection of confdence intervals (ICI) rule, signal
denoising, sampling rate

I. INTRODUCTION

Noise is inevitable in real-world data and may be negligible

only in cases of high signal to noise ratios (SNRs). However,
in most practical scenarios, noise corrupts analyzed signals
in a signif cant manner. Hence, its removal is a crucial
step proceeding any further signal processing and analysis.
Thus, denoising preprocessing is found in a wide range of
applications, such as data mining, video coding, (medical)
image analysis, seismology, radar, sonar, speech processing,
astronomy and many more.
In particular, additive white Gaussian noise (AWGN), due
to its nature, adds high frequency components to considered
signal. Hence, one of denoising approaches is to remove the
AWGN in transform domain (using the Fourier or wavelet
transforms). However, in some practical applications utilizing
low-pass flters in Fourier domain cause also the removal
of fne details which may carry key information. On the
other hand, temporal/spatial fltering methods perform noise
suppression on raw signal in original signal domain and hence
temporal fltering does not require loss-less inverse transform
procedure.
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Note that temporal f Iters may be divided to f xed and adaptive.
Fixed size flters, in order to eff ciently reduce noise, require
a prior knowledge on both signal and noise [1]. On the other
hand, adaptive flters are able to reconf gure themselves by
tracking non-stationary changes in signal and to adjust to input
statistics (meaning that little or no prior knowledge on noise
or signal is required) [1].

This paper presents an adaptive temporal fltering method
based on the intersection of conf dence intervals (ICI) rule and
its improved version (called relative intersection of conf dence
intervals (RICI) rule) applied to signal denoising. The original
ICI method was frst proposed in [2], and later was applied to
adaptive bandwidths selection and denoising in [3], [4], [5].
The original ICI method was shown to eff ciently adapt to
unknown smoothness of the signal ensuring close to optimal
bias-to-variance tradeoff [6]. One of the advantages of the
method is requiring only the estimation of noise variance, and
not the bias (nor higher derivatives of the estimate needed for
bias estimation, often required by numerous plug-in methods
(3D-

On the other hand, the main shortcoming of the ICI method
is its sensitivity to suboptimal threshold I" selection. Namely,
small T" values result in poor denoising, while, on the other
hand, large I" values oversmooth denoised signal. This problem
was solved by the RICI method which introduced additional
criterion for optimal window width selection that allowed
choosing arbitrary large I' values with oversmoothing being
avoided by additional threshold.

The paper provides study on the denoising quality of both
methods with regards to signal sampling rate. For indices of
denoising performances the reduction in root mean squared
error (RMSE) and mean absolute error (MAE) were used.
The rest of the paper is organized as follows. Section II
presents theoretical background of the ICI and the improved
RICI method. Their denoising performances, in terms of
estimation error reduction, with respect to signal sampling
frequency are elaborated in Section III. Conclusion is found
in Section IV.

II. ORIGINAL AND IMPROVED ICI ESTIMATOR
A. ICI-based estimator
Let us model discrete noisy signal z(¢;) corrupted by the
AWGN as:
2(t:) = y(ts) + £(ti), M

where y(t;) is the original discrete signal, £(¢;) is zero-mean
normally distributed error (E{e} = 0 and F{e?} = 0?), and



A is sampling period such that time t; = i-A,i=1,2,--- | N
(sampling frequency is fs = %).

The goal of the denoising procedure is to obtain discrete
estimate §(¢;), as close as possible to the noise-free signal
y(t;), with estimation error:

e(ti,h) = y(t:) — 4(ti, h), 2
being minimal. According to [7], e(t;, h) can be expressed as:

where b(t;,h) is estimation bias, h is estimation win-
dow size, and ((t;,h) is normally distributed random error
(N(0,s(t;, h))). The following inequality, as shown in [3],
holds:

|C(tzuh)| < X1-8/2 'S(tiuh)v (4)

with probability p = 1 — 3 (where x;_g/o stands for the
(1 — 8/2)th quantile of the standard Gaussian distribution).
By introducing Eq. (4) to Eq. (3) the following inequity is
obtained:

|e(ti7h)| < b(tiuh)—’—xlfﬁ/Q 'S(tiuh)' (5)

In order to achieve desirable denoising performance we are to
fnd optimal window size hy which ensures best compromise
(defned by «) between bias b(¢;, h) and random error [8]:

ho = max{h:Mga}. (6)
X1-p/2 - 8(ti, h)
It was shown in [8], for h < hg:
b(tzuh) < Q- X1-8/2 'S(tiuh)a (7)
which lead to [3]:
le(ti,R)] < (1+a)-x1-p/2-s(ti, h), (8)
or written in another form:

where I' = (1 + ) - x1—p/2 is preset threshold. Thus, Eq. (9)
can be expressed as:

Hence, upper and lower boundaries of confdence interval
D(t;, h) limits can be expressed as:

and

Here we need an algorithm to test the hypothesis h < hg for
a range of window widths H = {h; < he < --- < hp}
resulting in the h;+ as close to the optimal hg as possible.
The motivation for the algorithm, called the ICI rule, cames
from Eq. (9) suggesting that y(¢;) € D(t;,h) for h; < hy.
Or, in other words, intersection of D(¢;,h;), 1 < i < j is
nonempty and has at least one common point (that point is
y(t;)) for hy < ho. Thus, h;+ can be found by increasing h; as
long as the intersection of D(¢;, h;), 1 < i < j, is nonempty.

Hence, the largest j (denoted as j ) for which exists nonempty
intersection of all previous conf dence intervals D(¢;, h;), 1 <
i < j* defnes the proper hj+ used for calculation of the
corresponding estimate §(t;, 7+ ).

Thus, the intersection of D(¢;, h;), 1 < i < j, can be defned
as:

where L(t;, h;) is the largest lower boundary, def ned as:
L(t;, hj) = max{L(t;, hj_1),L(t;,h;)}, j=1,2,--- L, (14)
and U(t;, hj) is the smallest upper boundary, def ned as:
Ul(ti,hy) = min{U(t;, hj—1),U(ti, hy)}, 7=1,2,---,L. (15)

Note that performances of the ICI-based denoising are highly
dependant on the threshold I'. Namely, large I" causes signal
oversmoothing (h;+ > hg). On the other hand, small T" leads to
signal undersmoothing (h;+ < ho) [9]. Furthermore, as shown
in [3], it is diffcult to fnd the optimal, data-dependant I'
from a theoretical analysis. In order to solve this problem, the
following section introduces a modif cation of the ICI method
(called RICI rule) robust to suboptimal threshold I" selection.
In addition, the RICI method was shown to signif cantly
outperform the original ICI in terms of denoising quality.

B. RICI-based estimator

The motivation behind the improved ICI method is to
avoid signal oversmoothing (caused by too large I' values)
by introducing an additional criterion besides tracking the
non-emptiness of confdence intervals intersection. Namely,
the RICI method also takes into account the amount of this
overlapping, def ned as:

Let us here defne R(t;,h) as a ratio of the overlapping and
size of the considered conf dence interval D(¢;, h):

O(ti, h)
U(ti,h) — L(t;, h)’

Uty h) = L(t;, h)
~ Ul(ty,h) — L(ti, h)’ (18)

R(ti, h) (17)

Note that minimal R(¢;,h) = 0 in case of the intersection
of confdence intervals being empty. On the other hand,
maximal value of R(t;,h) = 1 is obtained when intersection
of all previous confdence intervals is inside the considered
confdence interval. Being that R(¢;, h) € [0, 1], the RICI rule
introduces additional threshold R, such that:

R(ti,h) > R, (19)

where R, € [0, 1]. Note that the ICI method is special case of
the RICI method for R. = 0.

The RICI method was shown to be highly robust to suboptimal
threshold values while outperforming the original ICI method
in terms of the denoising accuracy [10], [11], [12], [13], [14],
[15], [16], [17], as shown in the next section.



TABLE I
DENOISED RMSES FOR A RANGE OF NOISY SNRS WITH REGARDS TO SIGNAL SAMPLING PERIOD (100 MONTECARLO NOISE REALISATIONS, I" = 1.5,

R. = 0.82).
A 1 1 1 _1 _ 1 1 1 1 _1 1 1 1 1 _1 1
SNR 100 500 1000 5000 10000 100 500 1000 5000 10000 100 500 1000 5000 10000
ICI RICI Improvement (RICI vs. ICI) [%]
Blocks
5 1.482 | 0.999 | 0.770 | 0.381 0.271 0.906 | 0.653 | 0.598 | 0.540 0.534 389 | 34.6 22.4 -41.8 -97.2
10 1.431 | 0.920 | 0.713 | 0.350 0.250 0.620 | 0.318 | 0.231 | 0.114 0.089 56.7 | 65.5 67.6 67.5 64.4
15 1.413 | 0.884 | 0.692 | 0.339 0.241 0.566 | 0.286 | 0.201 | 0.095 0.068 59.9 | 67.6 70.9 71.9 71.8
20 1.406 | 0.870 | 0.681 | 0.335 0.239 0.551 | 0.267 | 0.189 | 0.089 0.064 60.8 | 69.4 72.3 73.3 73.0
30 1.408 | 0.863 | 0.676 | 0.333 0.237 0.541 | 0.255 | 0.183 | 0.087 0.062 61.6 | 70.4 72.9 73.8 73.6
HeaviSine
5 2.062 | 1.142 | 0.885 | 0.459 0.358 1.087 | 0.738 | 0.632 | 0.496 0.472 473 | 353 28.6 -8.0 -31.8
10 1.969 | 1.104 | 0.859 | 0.429 0.335 0.872 | 0.497 | 0.386 | 0.214 0.167 55.7 | 55.0 55.1 50.1 50.0
15 1.966 | 1.099 | 0.859 | 0.424 0.332 0.852 | 0.476 | 0.365 | 0.188 0.138 56.7 | 56.7 57.5 55.7 58.5
20 1.960 | 1.098 | 0.859 | 0.425 0.333 0.862 | 0.474 | 0.363 | 0.185 0.134 56.0 | 56.8 57.7 56.4 59.7
30 1.962 | 1.099 | 0.862 | 0.428 0.334 0.859 | 0.481 | 0.363 | 0.188 0.135 56.2 | 56.2 57.8 56.1 59.7
Doppler
5 0.244 | 0.166 | 0.134 | 0.078 0.060 0.137 | 0.094 | 0.081 | 0.057 0.051 43.8 | 435 39.4 26.4 15.8
10 0.240 | 0.163 | 0.130 | 0.074 0.057 0.111 | 0.074 | 0.060 | 0.034 0.026 53.9 | 54.6 54.3 53.7 53.8
15 0.238 | 0.162 | 0.130 | 0.073 0.057 0.106 | 0.071 | 0.057 | 0.031 0.024 553 | 56.3 56.4 57.4 58.0
20 0.238 | 0.162 | 0.130 | 0.073 0.057 0.104 | 0.070 | 0.056 | 0.031 0.023 56.2 | 56.7 56.5 57.8 58.6
30 0.238 | 0.162 | 0.130 | 0.074 0.057 0.103 | 0.070 | 0.057 | 0.031 0.024 56.6 | 57.0 56.4 57.6 58.5
Bumps
5 1.109 | 0.472 | 0.376 | 0.210 0.155 0.538 | 0.258 | 0.225 | 0.157 0.140 51.5 | 452 40.1 25.3 9.5
10 1.067 | 0.449 | 0.354 | 0.197 0.145 0.311 | 0.200 | 0.166 | 0.091 0.069 70.9 | 554 53.2 53.6 52.6
15 1.048 | 0.444 | 0.346 | 0.194 0.143 0.238 | 0.195 | 0.159 | 0.085 0.062 77.3 | 56.1 54.0 56.4 56.7
20 1.039 | 0.443 | 0.344 | 0.193 0.143 0.213 | 0.195 | 0.157 | 0.084 0.061 79.5 | 56.1 54.2 56.5 57.1
30 1.027 | 0.444 | 0.342 | 0.194 0.143 0.210 | 0.195 | 0.157 | 0.085 0.062 79.6 | 56.1 54.0 56.4 56.8
TABLE II
DENOISED MAE FOR A RANGE OF NOISY SNRS WITH REGARDS TO SIGNAL SAMPLING PERIOD (100 MONTECARLO NOISE REALISATIONS, I = 1.5,
R. =0.82).
A 1 1 1 _1 _ 1 1 1 1 _1 1 1 1 1 _1 1
SNR 100 500 1000 5000 10000 100 500 1000 5000 10000 100 500 1000 5000 10000
ICI RICI Improvement (RICI vs. ICI) [%)]
Blocks
5 1.301 | 0.815 | 0.604 | 0.291 0.206 0.637 | 0.397 | 0.346 | 0.289 0.280 51.0 | 51.3 42.7 0.7 -35.7
10 1.266 | 0.755 | 0.563 | 0.274 0.195 0.407 | 0.179 | 0.121 | 0.054 0.040 67.9 | 76.3 78.6 80.3 79.4
15 1.253 | 0.731 | 0.547 | 0.267 0.190 0.377 | 0.164 | 0.107 | 0.047 0.033 69.9 | 77.6 80.5 82.4 82.6
20 1.244 | 0.721 | 0.540 | 0.264 0.188 0.369 | 0.157 | 0.104 | 0.047 0.033 70.3 | 78.2 80.8 82.4 82.3
30 1.243 | 0.716 | 0.536 | 0.263 0.187 0.370 | 0.151 | 0.102 | 0.046 0.033 70.2 | 78.8 80.9 82.4 82.3
HeaviSine
5 1.817 | 0.992 | 0.754 | 0.383 0.290 0.871 | 0.553 | 0.455 | 0.313 0.276 52.1 | 443 39.7 18.1 4.9
10 1.740 | 0.948 | 0.723 | 0.349 0.261 0.733 | 0.412 | 0.316 | 0.170 0.133 57.9 | 56.5 56.3 51.1 49.3
15 1.738 | 0.942 | 0.721 | 0.341 0.251 0.723 | 0.398 | 0.297 | 0.144 0.104 584 | 57.8 58.8 57.8 58.6
20 1.732 | 0.940 | 0.719 | 0.340 0.251 0.728 | 0.397 | 0.295 | 0.137 0.097 58.0 | 57.7 59.0 59.6 61.5
30 1.735 | 0.941 | 0.721 | 0.342 0.250 0.727 | 0.402 | 0.294 | 0.136 0.093 58.1 | 57.3 59.2 60.3 62.8
Doppler
5 0.205 | 0.139 | 0.109 | 0.058 0.044 0.107 | 0.071 | 0.060 | 0.039 0.033 47.7 | 49.2 45.0 31.7 23.5
10 0.202 | 0.135 | 0.105 | 0.053 0.039 0.089 | 0.057 | 0.045 | 0.025 0.019 55.7 | 58.1 57.5 52.9 51.3
15 0.200 | 0.135 | 0.104 | 0.052 0.038 0.088 | 0.054 | 0.041 | 0.021 0.016 56.2 | 60.1 60.1 58.6 57.9
20 0.200 | 0.135 | 0.104 | 0.051 0.037 0.086 | 0.053 | 0.041 | 0.020 0.015 57.0 | 60.6 60.7 60.2 60.1
30 0.200 | 0.135 | 0.104 | 0.051 0.037 0.085 | 0.053 | 0.041 | 0.020 0.014 574 | 60.9 61.0 60.9 61.2
Bumps
5 0.751 | 0.335 | 0.269 | 0.142 0.104 0.350 | 0.154 | 0.131 | 0.089 0.078 534 | 53.9 51.4 37.3 24.9
10 0.739 | 0.331 | 0.260 | 0.138 0.100 0.199 | 0.117 | 0.095 | 0.052 0.039 73.0 | 64.5 63.7 62.4 61.1
15 0.728 | 0.332 | 0.257 | 0.137 0.100 0.146 | 0.118 | 0.095 | 0.051 0.038 80.0 | 64.5 63.0 62.6 62.2
20 0.726 | 0.332 | 0.257 | 0.138 0.100 0.119 | 0.119 | 0.097 | 0.053 0.039 83.6 | 64.0 62.3 61.7 61.5
30 0.722 | 0.332 | 0.257 | 0.138 0.101 0.100 | 0.120 | 0.098 | 0.054 0.040 86.1 | 63.7 61.8 61.0 60.6




Blocks ) Blocks

U

z(n),y(n)
i (n), 52(n)

e1(n,h),ea(n, h)

-2 -2 RICI
0 0.5 1 0 1
ts t, ts
(a) (b) (c)
HeaviSine HeaviSine HeaviSine )
5 5 cl =
g g RICI 5 1
j‘é 0 E 0 ,1 0 \M
v 5 35 £ o
g RICI
0 0.5 1 0 0.5 1 0 0.5 1
ts ts ty
(d) (e) )
Doppler Doppler ] Doppler
05 _ 05 <
g \i’ SN 0.2
= o = oo S oo
= = =
n S il £ . ci
-0.5 = -0.5 RICI 5 0.2 RICI
0 0.5 1 0 0.5 1
t, ts ty
(2) (h) (i)
Bumps ) ) Bumps Bumps
ICl S
= 4 g 4 RICI E’/ 0 P—
2 2 =
n S £ ci
0 0 5 2 RICI
0 0.5 1 0 0.5 1 0 0.5 1
tb tﬁ s
8) (k) )
Fig. 1. Denoising results for tested signals (N=1000, A = -—-—, I' = 1.5, R. = 0.82, noisy signal SNR=10). a) Noise-free y(¢s) and noisy z(ts) Blocks

signal. b) Blocks signal denoised using the ICI (blue, g1 (¢ ])) and RICI method (red, §2(ts)). ¢) Estimation error for the Blocks signal for the ICI (blue,
e1(ts), RMSE=0.6954) and RICI method (red, e2(ts), RMSE=0.2167). d) Noise-free y(ts) and noisy z(ts) HeaviSine signal. e) HeaviSine signal denoised
using the ICI (blue, §1(ts)) and RICI method (red, §2(ts)). f) Estimation error for the HeaviSine signal for the ICI (blue, e1(ts), RMSE=0.8451) and RICI
method (red, e2(ts), RMSE=0.3862). g) Noise-free y(¢s) and noisy z(ts) Doppler signal. h) Doppler signal denoised using the ICI (blue, §1(ts)) and RICI
method (red, 92(ts)). i) Estimation error for the Doppler signal for the ICI (blue, e1 (ts), RMSE=0.1329) and RICI method (red, e2(ts), RMSE=0.0634). j)
Noise-free y(ts) and noisy z(ts) Bumps signal. k) Bumps signal denoised using the ICI (blue, §1(ts)) and RICI method (red, g2 (¢s)). 1) Estimation error
for the Bumps signal for the ICI (blue, e1(ts), RMSE=0.3500) and RICI method (red, e2(ts), RMSE=0.1565).

III. SIMULATION RESULTS RMSE.

Fig. 1 gives an example of denoising of noisy (SNR=10)
Denoising performances of the ICI and the improved signals Blocks, HeaviSine, Doppler, and Bumps for N = 1000
RICI method with regards to signal sampling rate have with I' = 1.5 and optimal R. = 0.82. Fig. 1(a) gives noisy
been analyzed on four standard test signals (Blocks, Heavi- and noise-free Blocks signals, followed by the signals denoised
Sine, Doppler, and Bumps signal), each 1 s long. Denoising using the ICI and the RICI method shown in Fig. 1(b). Fig.
simulations (performed in Matlab 2016b) have been per- 1(c) shows estimation error for the ICI and RICI method which
formed for 100 signal lengths of each tested signal N = was reduced, in terms of the RMSE, by 68.84% (from 0.6954
{100, 200, 300 10000} sampled with sampling periods for the ICI to 0.2167 for the RICI method). Next, Fig. 1(d)
A 100, 2(1)0, 5500 3 10000} respectively. Estimation shows noisy and noise-free HeaviSine signals. Fig. 1(e) show
quahty has been measured in terms of the reduction in denoised HeaviSine signals obtained using the ICI and RICI
denoised RMSE and MAE, averaged over 100 random Mon- method, followed by their estimation errors presented in Fig.
teCarlo realizations of noise. The parameter I' was set to 1(f). As it can be seen, estimation error RMSE was reduced
1.5 (belonging to an interval proposed in [3]) and optimal from 0.8451 to 0.3862 (by 54.30%). Figs. 1(g)-1(i) show an

threshold R. = 0.82 was calculated as the one minimizing
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Fig. 2. Denoised signal RMSE and MAE for a range of signal sampling rates for the ICI (blue) and the RICI (red) method (I' = 1.5, R. = 0.82, noisy
signal SNR=10, averaged over 100 MonteCarlo noise realisations). a) Denoised Blocks signal RMSE. b) Denoised Blocks signal MAE. ¢) Denoised HeaviSine
signal RMSE. d) Denoised HeaviSine signal MAE. e) Denoised Doppler signal RMSE. f) Denoised Doppler signal MAE. g) Denoised Bumps signal RMSE.

h) Denoised Bumps signal MAE.

example of denoising of Doppler signal. Namely, Figs. 1(g)
and 1(h) show noisy and noise-free, as well as signals denoised
by the ICI and RICI method, respectively. The estimation error
for the ICI and RICI method for Doppler signal (which was
reduced 52.32%, i.e. from 0.1329 for the ICI method to 0.0634
for the RICI method) is given in 1(i). Finally, noise-free and
noisy Bumps signals are shown in Fig. 1(j). Denoised Bumps
signals using the ICI and RICI method are shown in Fig. 1(k),
followed by the estimation errors for both methods given in
Fig. 1(1). As it can be seen, the RICI method has signif cantly
outperformed the original ICI method in terms of the denoising
quality for Bumps signal by reducing its estimation error by
55.30% (from 0.3500 to 0.1565).

Fig. 2 gives the RMSE and MAE for all tested signals with
regards to sampling period (noisy signal SNR=10). Here is
important to note that in all cases both data-driven adaptive
methods exhibit signif cant increase in estimation quality for
higher sampling rates (smaller sampling periods A). Namely,

for the Blocks signal the RICI method outperformed the
original ICI method by reducing estimation RMSE up to
56.70% and MAE up to 67.87%. For the HeaviSine signal,
the RICI method reduced RMSE by up to 49.42% and MAE
by up to 49.26%, when compared to the ICI method. Similar
results were obtained for the Doppler signal when RMSE was
reduced by up to 53.42% and MAE by up to 51.21%. Finally,
for the Bumps signal the RMSE has been reduced by up to
52.44% and MAE by up to 60.80%.

Table I gives denoised RMSE for all tested signals for a range
of noisy SNRs {5, 10, 15,20, 30} and sampling periods A =
{5 55> 1065 055+ - ** » Tovog - Simulation results given in
the Table I have been averaged over 100 MonteCarlo noise
realisations. As presented in the table, the higher sampling
rates (smaller sampling periods) have resulted in reduction of
estimation RSME for all testes SNRs and all tested signals
(both for the ICI and the RICI method). Furthermore, the RICI
algorithm outperformed the original ICI algorithm in terms of




RMSE reduction in almost all cases. Namely, the RICI method
has reduced the RMSE by up to 73.8% for the Blocks signal,
by up to 59.7% for the HeaviSine signal, by up to 58.6% for
the Doppler signal, and by up to 79.6% for the Bumps signal.
In addition, denoising results for all tested signals in terms of
the MAE are presented in Table II for a range of noisy SNRs
and signal sampling periods (averaged over 100 MonteCarlo
noise simulations, I' = 1.5, R. = 0.82). As it can be seen,
for all tested SNRs both the ICI and RICI method (I' = 1.5,
R, = 0.82) resulted in smaller MAE with increase in sampling
rate (for smaller sampling periods). In other words, both the
ICI and RICI method perform better for longer signals (signals
sampled with higher frequency) in terms of denoising quality.
In particular, the RICI method outperformed the ICI method
in almost all cases reducing the MAE by up to 82.6% for the
Blocks signal, by up to 62.8% for the HeaviSine signal, by up
to 61.2% for the Doppler signal, and by up to 86.1% for the
Bumps signal.

In conclusion, the given study elaborates on the performances
of the adaptive data-driven ICI and the RICI methods with re-
gards to sampling rate. The analysis has been been performed
for several test signals and a range of SNRs. As shown in the
paper, both methods (especially the improved RICI method)
signif cantly improve estimation quality with increase of the
signal resolution (for larger amount of data processed).

IV. CONCLUSION

This paper provides detailed elaboration on the denois-
ing accuracy of the ICI-based and the RICI based adaptive
temporal fltering methods with regards to signal sampling
rate. The analysis was performed on four signal classes for
a range of SNRs. As shown in the paper, the improved RICI
method outperformed the original ICI method reducing the
RSME by up 79.6% and MAE by up to 86.1%. Furthermore,
both methods, especially the RICI method, were shown to
exhibit estimation accuracy improvement with increase in
signal sampling rate.
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